Abstract

This Standard establishes requirements for packaging of production parts shipping to Cummins manufacturing sites globally.
Table of Contents

Heading | Page Number
Abstract | 1
Table of Contents | 2
1. Scope | 5
2. Applicable Documents | 5
3. Definitions | 5
4. Introduction and General Information | 6
 4.1. Introduction | 6
 4.2. Purpose | 6
 Figure 1: www.supplier.cummins.com Screenshot | 7
 4.3. Supplier Compliance | 7
 4.4. Key Contacts | 8
 4.5. Revisions and Responsibilities | 8
 Figure 2: Packaging Data Sheet (PDS) Data Flow Diagram | 10
 Figure 3: Package Data Sheet (PDS) Flow Chart | 11
5. Packaging Requirements | 13
 5.1. Part Protection | 13
 5.2. Failsafing | 14
 5.3. Part Cleanliness | 14
 5.4. Preservation and Shelf Life | 14
 5.5. Sustainability and Environmental Impact | 15
 Figure 4: Recycling Resin Code per Sustainable Packaging Coalition | 16
 Figure 5: Environmental Impact | 17
 5.6. Lean Principles in Containerization | 18
 5.7. Packaging Materials | 18
 Figure 6: Acceptable Pallet Styles | 21
 Figure 7: Examples of Unacceptable Pallet Styles | 21
 Figure 8: ISPM-15 Certification Mark | 22
 5.8. Package Closure | 22
 5.9. Modularity | 22
 Figure 9: Modularity & Cube Utilization of Loads | 23
 5.10. Unit Load Stability and Stack-ability | 24
 5.11. Extreme Distribution Conditions | 25
 5.13. Packaging Trial Shipments | 26
 Figure 10: Trial Shipment Identification Label | 26
Table of Contents

5.15. Packaging Plan ...27
Figure 11: Example Packaging Plan ...28
5.16. Packaging Test Standards ..28
6. Dedicated Returnable Packaging ...29
6.1. Introduction ..29
6.2. Returnable Packaging Policy ...29
6.3. Returnable Packaging Justification ...29
6.4. Returnable Packaging Funding and Ownership ...30
6.5. Cummins Responsibility ...30
6.6. Supplier Responsibilities ..31
7. Bar Code Shipping/Parts Label Specifications ..33
7.1. Purpose ...33
7.2. Scope ..33
7.3. Introduction ..34
7.4. Label Specific Glossary of Terms ...34
7.5. Shipping/Parts Identification Label Size and Material ..35
Figure 12A: Shipping/Parts Identification Label Dimensions ...36
Figure 12B: Shipping/Parts Identification Label Dimensions ...37
Figure 13: Shipping/Parts Identification Label Hang Tag ...38
Figure 14: Odette Format with Country of Origin Data Location ...38
Figure 15: Legacy Cummins Label with Gross Wt. and Country of Origin39
Figure 16: Label Identification Table ..40
7.6. Bar Code Symbology ..41
7.7. Special Labels ..41
Figure 17: Special Label ..42
Figure 18: Master Label ...43
Figure 19: Mixed Load Label Examples ..44
Figure 20A: Label Location Examples ...45
Figure 20B: Label Location Examples ...46
Figure 20C: Label Location Examples ...47
8. Ergonomics and Sustainability ...47
9. Reference Readings ...48
Appendix A: Packaging Glossary of Terms ...49
Table A1: Packaging Glossary of Terms ...49
Appendix B: Production Component Packaging Guideline - Solid Timber Closed Crating ..57
B1. Scope ..57
B2. Methodology ..57
Table of Contents

Heading Page Number
B3. Construction Details ..57
Figure B1: Plywood Crate ..58
Table B1: Footprint Sizes ..59
Figure B2: Runner Strips ...60
Figure B3: Crate Components Size ..61
Figure B4: Crate Components ..61
Figure B5: Construction Method ...62
Appendix C: Packaging Data Sheet (PDS)..63
 Figure C1: Packaging Specification Data Sheet (PSDS) Form64
 Figure C2: Packaging Specification Data Sheet (PSDS) Instructions65
 Figure C3: Packaging Cost Data Sheet (PCDS) Form ..66
 Figure C4: Packaging Cost Data Sheet (PCDS) Instructions67
Appendix D: Revision Log Sheet ...68
 Table D1: Revision Log Sheet ...68
1. Scope

The Standard provides requirements for all production and pre-production parts and materials supplied to Cummins sites worldwide, including all intercompany sales.

Specific procedures and/or requirements may exist in each plant and may not be included within this document so it is critical that suppliers work to understand any specific Cummins receiving site requirements. Suppliers shall submit their packaging proposal for approval to each of the specific Cummins receiving sites packaging representative.

Cummins New & ReCon Parts entities have different packaging requirements. Reference the Cummins Global Packaging Standard-New and ReCon Parts.

2. Applicable Documents

Applicable documents listed below may be obtained from the respective organizations listed.

a. AIAG B3, Shipping/Parts Identification Label Application Standard
b. ASTM D4169, Standard Practice for Performance Testing of Shipping Containers and Systems
c. ASTM D7611, Standard Practice for Coding Plastic Manufactured Articles for Resin Identification
d. CORP-09-10-03-01, Ergonomics Standard
e. ISO 6780, Flat Pallets for Intercontinental Materials Handling -- Principal Dimensions and Tolerances
f. ISO 8611-1, Pallets for Materials Handling -- Flat Pallets -- Part 1: Test Methods
g. ISO 8611-2, Pallets for Materials Handling -- Flat Pallets -- Part 2: Performance Requirements and Selection of Tests
h. ISO 8611-3, Pallets for Materials Handling -- Flat Pallets -- Part 3: Maximum Working Loads
i. ISPM 15, Regulation of Wood Packaging Material in International Trade

3. Definitions

Terms used in this standard are listed in Section 7.4. Label Specific Glossary of Terms and Appendix A: Packaging Glossary of Terms.
4. Introduction and General Information

4.1. Introduction

The Cummins Global Packaging Standard-Production Parts, hereinafter “the Standard” has been created with the goal to standardize packaging, reduce waste, and improve quality and packaging sustainability while providing parts at the lowest total cost. Packaging is a key element in the supply chain which can impact safety, environment, quality, line side delivery, order quantities, inventory levels, freight utilization and customer satisfaction.

Packaging designs shall focus on environmental impact and safety including consideration to ergonomics and unit load stability in transit through point of use. Specific guidance on acceptable materials and methods are outlined throughout the Standard.

In this document the word “should” indicates a Cummins recommendation, the word “shall” indicates a Cummins requirement and the word “shall” indicates a requirement by law or statute. It is the intent of Cummins that all suppliers shall comply with the requirements in this document. The chapters within this document will provide suppliers with the necessary information to meet Cummins expectations for component part delivery.

4.2. Purpose

This document specifies packaging practices and standards for all suppliers of component parts to any and all Cummins manufacturing facilities. For Suppliers of parts to any and all Cummins Parts Distribution Centers (PDC) reference the Global Packaging Standard-New & ReCon Parts. These Standards are the foundation for Suppliers to develop their part specific packaging specifications and ensure that all incoming component(s) are adequately protected at the lowest total cost with due consideration of sustainability and the entire supply chain flow. Supplier packaging shall preserve part quality through the entire distribution chain up to and including the point of use regardless of the freight terms or mode of transport.

4.3. Supplier Compliance

Cummins will randomly inspect incoming packaging to determine compliance per the Standard. Where additional regulatory or other packaging requirements exist, or are not covered in this Standard, the supplier is responsible to obtain and assure compliance.

In the event of noncompliance to the specifications within this document, Cummins reserves the right to:

4.3.1. Issue a Material Non-Conformance (MNC) to document the non-conformance to notify the supplier of corrective action required.

4.3.2. Issue a Supplier Corrective Action Report (SCAR) to document and drive corrective action through a Supplier Quality Improvement Engineer (SQIE) led 7-Step process.

4.3.3. Reject and request a Return Material Authorization (RMA) to return any shipment(s) received that are improperly packaged and/or identified at the supplier’s expense.
4.3.4. Charge the supplier for any cost due to non-compliance to the Standard. (e.g. may include the cost of material and/or labor for any repackaging, sorting, rework or replacement of damaged parts, etc.).

4.3.5. Consider removing the supplier as a supplier to Cummins.

4.4. Key Contacts

Beyond the global requirements provided for here-in, Suppliers are required to understand and comply with Cummins receiving Site Specific Packaging Requirements and thus facilitate a prompt approval of their packaging proposal.

Questions specific to this Packaging Standard shall be submitted in writing to the Sourcing Manager.

In using or applying the Cummins Global Packaging Standard you may have recommendations or questions requiring clarification or change. See Section 4.5. Revisions and Responsibilities on page 8.

4.5. Revisions and Responsibilities

The Cummins Global Packaging Council is a group of Packaging Engineering functional leaders from multiple Cummins Business Units (BUs). The Council's objective is to assist Cummins Corporate Supply Chain in developing and maintaining global cross-BU packaging standards, common processes, and create functional excellence in the Cummins packaging function.

Revisions to the Standard will be controlled and authorized by the Cummins Global Packaging Council.

In using or applying the Cummins Global Packaging Standard you may have recommendations or questions requiring clarification or change.

Recommendations or questions are to be submitted to the Sourcing Manager using the Stakeholder Input Form as follows:

a. Stakeholder queries Sourcing Manager
b. Sourcing Manager provides Stakeholder Input Form to Stakeholder
c. Stakeholder returns completed Form to Sourcing Manager
d. Sourcing Manager vets Stakeholder input
e. Sourcing Manager forwards completed form to GPC Packaging Leader
4.5. Revisions and Responsibilities (Continued)

The supplier is responsible to monitor the Standard and Standard Revision History. See Figure C4: Packaging Cost Data Sheet (PCDS) Instructions.

4.6. Packaging Specification Approval Process

Internal and external Suppliers shall follow the process below in order to assure that their packaging meets the Standard and the site-specific packaging requirements.

Expendable packaging price per unit shall be defined as a separate line item in all piece part price quotations to Cummins Purchasing and in the Packaging Data Sheet (PDS) referenced in Appendix C: Packaging Data Sheet (PDS) on page 63.

4.6.1. Plant Packaging Representatives are responsible for establishing their specific receiving site packaging parameters for the Supplier. For example:

 a. Foot Print restrictions
 b. Weight & Height limitations
 c. Quantity per container limits
 d. Special Quality requirements
 e. Line side presentation orientation requirements

4.6.2. Suppliers shall contact the Packaging Representative from each specific Cummins receiving site to inquire about specific site related packaging parameters. A limited number of Cummins receiving sites have identified and documented their site-specific packaging requirements that shall be included in Supplier’s packaging proposal(s). Suppliers may find the Cummins Site Specific Packaging Requirements document published in the Cummins Supplier Portal. For any questions regarding site-specific requirements, please contact the site Packaging Representative.

4.6.3. Supplier shall develop their packaging proposal based on the Standard and the Cummins receiving site specific requirements and submit to Cummins Sourcing Manager using the Packaging Data Sheet located on the Supplier Portal (www.supplier.cummins.com). An example is shown in Appendix C: Packaging Data Sheet (PDS).

4.6.4. Where a part is used in both production and aftermarket/service applications the PDS approval process is required for all Cummins manufacturing sites and PDC's.

4.6.5. Each receiving site shall review the Suppliers proposed packaging from the Packaging Data Sheets and route internally for approval.
4.6.6. All individual part packaging specifications and related costs shall be defined prior to shipment of parts to a Cummins receiving site. No changes shall be made except those authorized by the Cummins receiving site Packaging Representative.

4.6.7. See Figure 2: Packaging Data Sheet (PDS) Data Flow Diagram and Figure 3: Package Data Sheet (PDS) Flow Chart for packaging approval process.
Figure 3: Package Data Sheet (PDS) Flow Chart
Figure 3: Packaging Data Sheet (PDS) Flow Chart (Continued)
5. Packaging Requirements

Supplier is responsible for packaging quality to assure proper component protection while in shipment from point of origin through point of use with consideration of all carrier modes used to transport freight.

5.1. Part Protection

Parts and materials shall be packaged with the following considerations:

5.1.1. Plan the packaging such that parts may be removed without unnecessary handling.

5.1.2. Nested parts may be sequentially packed but shall be easily removed from the packaging.

5.1.3. Plan the packaging such that a safe and stable unit load is maintained in the “as packed” condition when the closure is removed.

5.1.4. Protect open holes of functional parts which may be adversely affected by contaminants.

5.1.5. When plugs and caps are used they shall be easy to remove, but shall remain intact during transportation and handling.

5.1.6. Protect functional and pre-calibrated parts to the extent necessary to insure print specification compliance.

5.1.7. Protect special surfaces such as:

a. Machined Surfaces
b. Finish painted or to be painted
c. Finish plated or to be plated
5.2. Failsafing

Packaging may be designed to failsafe our manufacturing processes and/or to facilitate assembly through the incorporation of a mistake-proofing function to the packaging and/or through part presentation.

Examples:

a. Matched parts packaged as sets with a clear association of mating parts.
b. Scanning of the bar code parts identification labels can failsafe part introduction to the manufacturing process.
c. Where possible match packaging counts to assembly unit requirements.

5.3. Part Cleanliness

Supplier packaging and preservation methods shall protect for print specified part cleanliness requirements.

5.4. Preservation and Shelf Life

The requirements below are general and may be supplemented by order of the Cummins Supplier Quality Improvement Engineer as required for specific parts.

Preservation is the action required to prevent corrosion or deterioration and is normally independent of the packaging.

Preservation shall be sufficient to protect the product from any corrosion or deterioration for a period of 6 months for production parts and 18-months for aftermarket / Service parts, under normal warehouse storage and transportation conditions. The 6 or 18 month period begins when Cummins assumes title to the goods.

It is Cummins preference for the corrosion prevention material used to provide a dry-to-touch component whenever possible.

The Supplier shall, upon request, provide a copy of a Safety Data Sheet (SDS) for preservatives used.
5.5. **Sustainability and Environmental Impact**

The supplier is responsible to comply with Cummins sustainability initiatives to continually reduce our waste and disposal cost, and to increase our recycling efforts.

5.5.1. Packaging shall be created with consideration of all governmental regulations and environmental impact from packaging material selection through the end of life cycle.

5.5.1.1. Acceptable packaging materials include, but are not limited to:

- Clean corrugated/fiberboard
- Coated (non-wax) and fully recyclable fiberboard
- Molded pulp
- Clean Kraft Paper
- Paper (VCI treated acceptable)
- Polyethylene materials (HDPE, LDPE, LLDPE) other than foams
- Polyethylene Terephthalate (PET, PETE, PETG, RPET)
- Polypropylene materials (PP)
- Steel
- Wooden pallets/boxes/crates:
 - shall comply with International Standards for Phytosanitary Measures (ISPM-15).
 - Manufactured wood packaging materials shall comply with Cummins exposure limits of 0.016 ppm [0.02 mg/m³ of formaldehyde per cubic meter of air (mg/m³)] as an 8 hour total weighted average and 0.1 ppm (0.15 mg/m³) as a ceiling concentration determined in any 15 minute sampling.

5.5.1.2. Biodegradable and commercially compostable materials are preferred whenever possible.

5.5.1.3. In-process (pre-consumer) recycled materials and post-consumer recycled materials (PCR) are preferred whenever possible.

5.5.1.4. Allowable packaging materials with Cummins receiving site approval at the part number level:

- Single Use plastics (e.g. partitions, layer trays and pads)
- Foams (Ethylene, Propylene, Styrene, Urethane, etc.)
- Polyvinyl Chloride (PVC)
5.5.1.5. Prohibited packaging materials include:

b. Soiled Corrugated (oil soaked).
c. Wax or poly-coated corrugated (these are non-recyclable).
d. Microfoam laminated corrugated

5.5.1.6. Where practicable, all polymer resin material shall have the recycling resin code visible and legible. Per ASTM D7611—Standard Practice for Coding Plastic Manufactured Articles for Resin Identification.

![Recycling Resin Code](image)

Figure 4: Recycling Resin Code per Sustainable Packaging Coalition
5.5.1.7. Design packaging to minimize the environmental impact by:

a. Reducing the amount of material needed for the packaging and avoiding the use of non-renewable resources.
b. Reusing the packaging material in a manner that is safe and cost-effective with special attention to transportation distances necessary to complete the cycle.
c. Maximizing the use of renewable or recycled packaging materials.

Figure 5: Environmental Impact
5.6. Lean Principles in Containerization

The following guidelines shall be used in establishing the right-sized container, type and part orientation.

a. Containerization and packaging methods shall optimize pack density with consideration for part quality, ergonomics and cost.

b. Part orientation for ergonomic presentation shall optimize the operators grasp, lift, manipulation and part transfer to the work.

c. Part orientation in the container shall utilize the relative location to the container label as a reference for consistent presentation at line-side.

d. Where dunnage is required, its orientation within the container shall be consistently applied such that the part-to-shipping label relationship is maintained.

e. Manually handled containers are the preferred method when an ergonomic advantage can be realized by a decreased reach or lift distance.

f. The Gross Weight Limit (GWL) for manually handled containers to any given Cummins facility shall not exceed 15 kg or 33 lbs.

g. Manually handled containers are indicated when the part dimensions, features, and weight will allow the container to safely house in an ergonomically favorable orientation a maximum gross weight of 15 kg, with a target quantity of one third (1/3) to one hours production.

h. Where site usage dictates, manually handled containers shall be sized such that the Standard Pack Quantity (SPQ) does not exceed one day’s production – with the exception of high-density commodity items such as fasteners.

5.7. Packaging Materials

5.7.1. Packaging Design and Material Selection.

The supplier shall consider the following general practices in establishing packaging design and material selection.

5.7.1.1. The supplier shall utilize materials of sufficient strength and integrity to provide for the safe transport of quality parts to the point of use.

5.7.1.2. The supplier shall apply proper packaging principles in container and dunnage design with considerations for both static and dynamic conditions.
5.7.1.3. The supplier shall apply proper packaging principles in palletization and unit load securement.

a. Polyester strapping is preferred.
b. Metal strapping shall not be used without express written permission at the part number level from the Cummins Receiving Site Packaging Representative.

5.7.1.4. Containers are to be sized such that solid foundational support is derived from the pallet (no container/carton/part overhang allowed).

5.7.1.5. Use of corner posts and angle board are acceptable means of enhancing unit-load performance as required.

5.7.2. Pallet Design and Construction

The design and construction of the pallet shall effectively allow for the acceptable delivery and storage of the product. It is the responsibility of the supplier to determine the quality and performance of the pallet and that it meets and/or exceeds the requirements, taking into consideration all expected dynamics encountered during the distribution and storage environment.

Recycled and/or refurbished pallets shall perform the same as new pallets.

It is recommended that pallet design and testing follow industry standards, including but not limited to:

a. ISO 6780: Flat pallets for intercontinental materials handling — Principal dimensions and tolerances
b. ISO 8611-1: Pallets for materials handling — Flat pallets — Part 1: Test methods
c. ISO 8611-2: Pallets for materials handling — Flat pallets — Part 2: Performance requirements and selection of tests
d. ISO 8611-3: Pallets for materials handling — Flat pallets — Part 3: Maximum working loads
e. National Wooden Pallet and Container Association (NWPCA): UNIFORM STANDARD FOR WOOD PALLET
5.7.2.1. Pallet Design Requirements:

a. It is REQUIRED that all international shipments and any shipments to Cummins Aftermarket Parts Distribution Centers comply with ISPM 15 and be clearly marked as such. With increasing global trade, it is PREFERRED that all pallets comply with ISPM 15. In addition, all pallets used in or exported to UK and all European countries SHALL comply with ISPM 15. See Figure 8: ISPM-15 Certification Mark below for an example of the certification mark.

b. Pallets 40-inch L x 40-inch W (1016 mm x 1016 mm) and larger shall have 4-way entry.

c. Open space between top deck boards shall not exceed 3 inches (76 mm).

d. Top and bottom edge deck boards shall be flush with stringer ends within normal tolerances.

e. Stringer pallets shall have a minimum lift access of 3.5 inches (89 mm). Notched stringers on 4-way entry pallets shall have an opening height of 2.5 inches (64 mm). Notched opening shall be 9 inches (229 mm) wide, with radial cut top corners and placed on 16 inch to 24 inch (406 mm to 610 mm) centers.

f. Block style pallets shall have a minimum lift access of 4-inches (100 mm).

g. Pallets shall have sufficient beam strength for use with warehouse storage racks.

h. All fastener heads shall be countersunk or flush and remain so for the entire use and storage of the product/package.

5.7.2.2. Acceptable Pallet Styles (See Figure 4: Recycling Resin Code per Sustainable Packaging Coalition on page 16).

- Block Style, with 9-Block Risers
- 2-Way Entry, Flush Style Pallet
- 4-Way Entry, Flush Style Pallet
Figure 6: Acceptable Pallet Styles

- Block Style, with 9 Block Risers
- 2-Way Entry Flush Style Stringer
- 4-Way Entry Flush Style Stringer

Figure 7: Examples of Unacceptable Pallet Styles

- Single Wing Stringer
- Double Wing Stringer
- Pressed Wood
5.8. Package Closure

Container styles and methods of closure that require the use of knives or other tools are discouraged.

5.8.1. Acceptable methods of closure are:

a. Adhesives
b. Sealing Tape
c. Polyester or Nylon Strapping (Banding)

5.8.2. The following methods of closure are prohibited:

a. Metal Stitches and Staples
b. Steel Strapping (Banding)

5.9. Modularity

The following general guidelines shall be used in establishing the unit load footprint/cube. Where deviations are justified, the Supplier shall provide supporting rationalization upon request.

a. The unit load should be modular to the mode of transport from the supplier location to point of use.
5.9. Modularity (Continued)

b. Where multiple modes of transport are utilized, the unit load modularity should be optimized to the mode of transport resulting in the lowest total logistics cost.

c. Where multiple modes of transport are utilized and total logistics cost does not favor one mode over another, the unit load shall utilize the standards applicable to the global region of the receiving customer facility.

d. Where manually handled containers are determined to be the appropriate packaging method, the containers shall be modular to the unit load.

e. The supplier shall define carton dimensions to be modular to Unit Load cube appropriate to the method of transport, See Figure 9: Modularity & Cube Utilization of Loads for examples of carton modularity and cube utilization.

![Figure 9: Modularity & Cube Utilization of Loads](image)

Figure 9: Modularity & Cube Utilization of Loads
Should Maximize the Space on the Pallet and in the Truck and Take into Consideration Order Quantity Requirements, Load Weight and Package Cost.
5.10. Unit Load Stability and Stack-ability

5.10.1. Unit Load Integrity

The unit load shall be designed to maintain integrity during normal handling, transportation & storage.

a. The unit load shall safely stack up to 100” (2540 mm) in a dynamic environment (in transit) on a stable level plane of like freight (foot print & weight).

b. The unit load shall safely stack to the greater of three high or 10’6” (3200 mm), in a static environment (in warehouse).

c. To ensure maximum stacking strength, cartons unitized on a pallet shall be column stacked.

d. The maximum gross weight of loads shipped to Cummins locations shall not exceed 4,000 pounds per unit load unless authorized by the Cummins receiving site.

e. The unit load height to width ratio (h:w) shall not exceed 2:1 unless approved through the Cummins PDS approval process.

f. Unit loads shall be structured to maximize stability such that the center of gravity is located centrally to the container footprint and at the lowest elevation possible.

g. Cummins shall make every effort to order in multiples of the SPQ as defined in the Supplier Agreement.

h. Cummins should make every effort to order in even layer quantities (even layer multiples of the SPQ).

i. Cummins should make every effort to order Standard Unit Load Quantities (SULQ) when schedules allow.

Note: Where Cummins is not compliant with these order quantity protocols (compromising value in the supply chain), it is incumbent on the supplier to formally communicate the concern and actively seek resolution.

j. Whenever possible, the unit load should contain parts of the same part number however, mixed loads are accepted as allowed by the Cummins Supply Chain Agreement specific to those parts and that Cummins receiving site.

k. When mixed loads are appropriate due to product mix and release quantity, the supplier shall apply proper packaging principles in palletization.

l. All unit loads shall be equalized to full layer orientation whenever possible. Stacking cartons in a pyramid configuration on a unit load is not permitted. Exceptions will require written deviation from the Cummins receiving site.
5.10.2. Special Purpose Export and Over-pack Guidelines

This section covers approved crating specifications to be used for international shipments where a robust export pack is required. These specifications are derived from research of various packaging styles, regionally available materials, manufacturing capabilities and transportation conditions.

Specifications are defined through the appendices listed below. These specifications are provided as recommendation to suppliers with limited Packaging Engineering resource to develop application specific containers suitable to protect their parts through the global distribution environment.

Note: Solid Timber Closed Crating, See Appendix B: Production Component Packaging Guideline - Solid Timber Closed Crating.

5.11. Extreme Distribution Conditions

Extreme distribution conditions require more robust packaging protection than standard domestic highway freight. Examples include Less-Than-Truck-Load (LTL) vs. Full-Truck-Load (FTL) highway freight, air freight, ocean freight, rail, and parcel package shipments.

a. Less-Than-Container-Load (LCL) vs. Full Container Load (FCL) ocean freight transport methods may require further refinements to packaging design.

b. Weather conditions and freight handling methods in different parts of the world require additional protection from the elements.

c. The supplier shall be responsible for adequately protecting the product and packaging from moisture through the inclusion of Volatile Corrosion Inhibitor (VCI), Desiccants, and an appropriate closure method.

d. Closure methods should include covering and/or sealing the unit load with a poly-bag or stretch wrap film. This is particularly critical when LCL transportation methods are used.

Deviating from the normal mode of transportation may require additional measures.

a. The Supplier should be required to “Over-pack” the unit load to assure a quality part to the point of use.

b. This requirement also applies to Cummins International Freight Forwarders.

The supplier is responsible to understand and comply with the prevailing packaging and transportation regulations for the global regions through which their goods will ship.

5.13. Packaging Trial Shipments

Packaging trials may be required by the Cummins receiving site Packaging Representative to confirm the Supplier packaging proposal(s) as defined by the supplier PDS submission. The Supplier shall provide advance notice shipping/delivery coordination and follow-up. Trial shipment planning and coordination shall include the following:

Trial shipment identification labeling shall be on an approximately 8.5 in. x 11 in. (216 mm x 279 mm) plain white label as sample shown in Figure 10: Trial Shipment Identification Label on page 26.

![Figure 10: Trial Shipment Identification Label](https://cummins.com/image.png)

Advanced notification to the Packaging Representative shall contain:

a. Photos of the packaging prior to shipment
b. Quantity shipped
c. PDS Form
d. Planned delivery date
e. Carrier
f. Bill of Lading and/or Tracking Number

The supplier shall establish and maintain a ‘Packaging Process’ document linking the Cummins part number to the required packaging components (Bill of Materials) and work instructions.

a. The Packaging Process document shall use the Cummins part number as the primary reference.
b. The Packaging Process document shall include the packaging part numbers, quantities, and descriptions of all packaging components required to assemble the unit load.
c. The Packaging Process document shall include the packaging operation sequence considering part and dunnage orientation, and palletization layout.
d. The Palletization Layout shall establish container orientation such that all possible container labels are visible around the perimeter of the unit load.

The Packaging Process and Work Instructions document shall be under document control and readily accessible to the Supplier packaging operator and Cummins upon request.

5.15. Packaging Plan

A graphic representation or ‘Packaging Plan’ is not a requirement but is a component of our vision for functional excellence in Supplier packaging. A functionally excellent ‘Packaging Plan’, in addition to the above requirements, would include the following in an exploded isometric format.

a. Part Description (Noun name).
b. Dunnage* (*if applicable) - with description notated.
c. Part orientation - as packed including interface with dunnage* (*if applicable).
d. Part orientation - to the primary container label location.
e. Primary container - with description & SPQ notated.
f. Palletization layout of the unit load with label location indicated.
g. Reference dimensions and weights of packaging components.
h. Packaging Plan revision level / date of each document.
Figure 11: Example Packaging Plan

5.16. Packaging Test Standards

The supplier shall ensure part packaging performance complies with Cummins requirements. Cummins does not generally require Suppliers to perform laboratory validation testing of their packaging. Cummins recommends, and may require, especially in the instance of critical, high cost, sensitive or fragile parts, that testing be performed in a certified packaging test lab. The decision to perform validation testing, the selection of the appropriate test standard and assurance level is the responsibility of the Supplier.
6. Dedicated Returnable Packaging

6.1. Introduction

Returnable Containers are used to maximize the economics of product flow between Supplier and Cummins manufacturing facilities. Further, these containers are utilized to reduce the collective use of expendable packaging and advance our achievement of shared environmental initiatives. Although the ambition, it is not the specific mandate of a returnable container program to completely eliminate the use of expendable material in conjunction with the use of the returnable containers. In some instances, expendable dunnage and/or strapping is necessary to effectively and economically perform the appropriate container function.

6.2. Returnable Packaging Policy

To ensure that product shipments are uninterrupted, the supplier shall always quote an expendable packaging solution that complies with the same containerization and configuration as the returnable packaging.

In NO Instance is the supplier to purchase returnable containers with the intent that they will be used to supply Cummins or with the belief that the supplier will be reimbursed for any such expenditure, without express written authorization from the responsible Cummins receiving site Packaging Representative and the responsible Cummins Sourcing Manager.

The responsible Cummins receiving site Packaging Representative will be the only acceptable source to approve and validate all returnable packaging proposals based on total cost of ownership. Unless provided by our Suppliers, the returnable containers are assets owned by Cummins and are accounted for as such.

6.3. Returnable Packaging Justification

Justification of returnable packaging is a function of multiple cost variables including but not limited to expendable packaging cost, logistics and investment. Returnable containers are deemed a viable alternative to expendable packaging only after a thorough costing, Return on Investment (ROI) and an environmental impact analysis is performed.

Note: Cummins Suppliers shall actively participate in the provision of data required to perform the justification analysis.
6.4. Returnable Packaging Funding and Ownership

6.4.1. Ownership

a. The Cummins preferred method is for the Cummins receiving site to own/lease the returnable packaging.
b. Supplier owned returnable packaging may be an acceptable alternative, but shall be negotiated and agreed upon by the Cummins receiving site.

6.4.2. Funding/Purchasing

The method of returnable packaging investment is determined by the Cummins receiving site and is typically supported by a reduction in Supplier’s component piece price.

6.5. Cummins Responsibility

6.5.1. Cummins will determine the viability of the returnable packaging program and responsible party to provide the container fleet.

6.5.1.1. The supplier shall not assume that returnable “container” implies returnable dunnage. In certain circumstances returnable containers may be provided with the assumption that the supplier will provide expendable dunnage.

6.5.1.2. For Cummins owned returnable packaging, the Cummins Packaging Engineer will lead container/dunnage development and validation.

6.5.1.3. For Supplier owned returnable packaging, the Supplier will lead container/dunnage development and validation.

6.5.1.4. Returnable containers shall be outfitted with label placards, holders or clips as appropriate for the container size and type.

6.5.1.5. Cummins returnable container fleet may be managed by a Third Party Logistics (3PL) Provider. The returnable container fleet size and Container Logistics Plan will be agreed to jointly by the Cummins Supplier, Cummins receiving site and 3PL provider if applicable.
6.5.1.6. A Container Logistics Plan shall provide definition of the following as agreed upon by the Supplier and the Cummins receiving entity.

a. Dunnage Return Configuration or Methodology.
b. Utilization of Collapsibility Features and Return Configuration.
c. Container Cleaning and Maintenance Frequency/Plan.
d. Storage/reapplication container disposition plan at end-of-program.

6.5.2. Logistics Cost

All inbound and return logistics costs are the responsibility of the Cummins receiving site unless specifically stated in the Supply Chain Agreement between Cummins and the Supplier. The known exception to this policy is in the event of an expedited freight situation where Supplier is at fault. In this case, the Supplier will be responsible.

6.5.3. Returnable Container Maintenance

For Cummins owned returnable containers, the Cummins receiving site or 3PL provider is responsible for the performance of regular maintenance and cleaning of the containers unless other provisions are established in the Supplier/Cummins returnable packaging contract.

6.6. Supplier Responsibilities

Maintenance, cleaning, replacement, and purchase of additional containers due to demand are the responsibility of the owner of the returnable packaging. Cummins Suppliers are required to actively participate in the fleet management of returnable containers.

6.6.1. General Requirements

Suppliers are responsible for the following general requirements while the containers are within their control and/or possession:

a. Shall utilize containers only for shipment of the Cummins part and site for which they are intended.
b. Protect against theft and misuse by ensuring that returnable containers are handled properly and are secure at all times.
c. Provide a clean, dry and organized space for container storage that will not expose containers to the environment and with ready access and visibility to facilitate physical inventory upon request.
6.6.1. General Requirements (Continued)

d. Ensure that returnable containers are not used for long-term, work-in-process (WIP), or any form of use that extends the days of use of the container beyond the agreed upon allowable possession time or ‘float’ days.

e. Suppliers shall have a backup expendable package solution, and meet the same parameters as the returnable package (footprint, quantity).

f. Suppliers shall have an approved PDS for both the returnable and back-up expendable packaging.

g. Where the need for backup expendable packaging is directly attributable to Supplier not adhering to the agreed upon float days, the Supplier will bear the cost.

h. Provide 6 months advance notification to Cummins receiving site(s) of changes in volume or logistics that will impact the agreed upon float days and/or fleet size requirements.

i. Shall not modify the containers in any way.

j. Shall apply shipping labels to containers in the designated locations using the methods (placard, holder or clip) provided.

k. Shall apply no other labels, marks or deface the containers in any way.

l. When requested by Cummins, suppliers are required to track containers at the receiving and shipping transaction level. When requested by Cummins, Supplier are required to perform an inventory reconciliation of assigned containers at the frequency agreed upon with the Cummins receiving site or the 3PL provider.

m. Will incur charges for container loss deemed to be the result of poor practices or neglect by the Supplier.

n. The Supplier may be required to store containers during periods of reduced demand and at end-of-program pending the reapplication/disposition plan, for the period agreed upon by the Supplier and the Cummins receiving site.

6.6.2. Returnable Container Maintenance and Cleaning

For Cummins owned returnable containers, the Cummins receiving site or 3PL provider is responsible for the performance of regular maintenance and cleaning of the containers unless other provisions are established in the Supplier/Cummins contract.
6.6.2. Returnable Container Maintenance and Cleaning (Continued)

Suppliers are required to:

a. Isolate any damaged or suspect containers.
b. Identify all damaged or suspect containers utilizing Supplier’s own non-conforming material tags.
c. Include specific detailed information as to the defect type and location on the container.
d. Return damaged or suspect containers immediately to the Cummins receiving site or 3PL provider.

Suppliers may be charged with the cost of maintenance when it is conclusive that the damage or defect was caused by the negligent actions of the Supplier and/or its representatives.

Suppliers shall confirm all returned containers have all expired Shipping/Parts Identification Labels removed, are free of debris, and in safe usable condition.

For Supplier owned returnable containers, the Supplier is responsible for the performance of regular maintenance and cleaning of the containers unless other provisions are established in the Supplier/Cummins contract.

7. Bar Code Shipping/Parts Label Specifications

7.1. Purpose

To standardize the requirements for packaged material identification from point of origin to point of use.

7.2. Scope

These requirements pertain to all production parts and/or materials including samples shipping to all Cummins global manufacturing facilities. These requirements do not pertain to New & ReCon Parts and do not address content identification which may be required by governing tariffs, special handling instructions or the labeling of hazardous materials.
7.3. Introduction

The preferred Cummins labeling format is ODETTE. The Odette format was originally used primarily in Europe, but has since been adopted by many global automotive suppliers. Another acceptable label is the AIAG Shipping/Parts Identification Label Standard. The Cummins Legacy Label Format is based on the AIAG B-3 format (See Figure 15: Legacy Cummins Label with Gross Wt. and Country of Origin on page 39 below), and several sites have adopted later versions. Refer to Site Specific Packaging Requirements for further details and submit a package label example on the Packaging Data Sheet (PDS) for approval.

These labels are designed to improve supplier and customer productivity and controls of suppliers and customers by allowing effective and efficient capture of data for production counts, warehouse input/output, cycle counting, shipper generation, forwarding, freight transfer control, receiving and other inventory controls. Every effort should be made by the supplier to provide barcoded labels that meet these specifications.

7.4. Label Specific Glossary of Terms

a. Item- A single part of material purchased, manufactured, and/or distributed.
b. Standard Quantity Pack- A pack which always contains a standard quantity of like items.
c. Non-Standard Quantity Pack- A pack which contains variable quantities of like items.
d. Common Item Pack- A pack which contains all like items, i.e. same part/item numbers.
e. Mixed Item Pack- A pack containing items with different part/item numbers.
f. Subpack-One of the smaller packs (Which may be a standard quantity or non-standard quantity pack) that make up a larger multiple pack.
g. Shipping Pack- A pack used for shipping items from one plant to another and can be any of the packs described above.
h. Label- A card, strip of paper, etc. marked and attached to an object to indicate its nature, contents, ownership, destination, etc.
i. Tag- A label that is hung from an object, usually with a wire placed through a reinforced eyelet in the label/tag.
j. Shipping/Parts Identification Label- A label used to identify the contents of a shipping pack.
k. Master Label- A label used to identify and summarize the total contents of a shipping pack.
l. Mixed Load Label- A label used to designate mixed contents on the same unit load.
7.4. Label Specific Glossary of Terms (Continued)

m. Pack, Package or Load- A unit which provides protection and containment of items plus ease of handling by manual or mechanical means. Examples of containers or packs which normally are disposable bags, cartons, cartons on pallets, pallet boxes and metal tubs, and metal racks/skids.

n. Receiving Location Code - A unique code assigned by Cummins for each plant receiving dock location. (e.g. R/L 022 for Columbus Midrange Engine Plant)

o. Net Wt.: Total weight of product only contained in the package.

7.5. Shipping/Parts Identification Label Size and Material

Label size and Label Data Area field dimensions should be as displayed in Figure 12A: Shipping/Parts Identification Label Dimensions and Figure 12B: Shipping/Parts Identification Label Dimensions.

The label paper should be white in color with black printing. Adhesive types can be pressure sensitive or dry gummed if adherence to the package substrate is assured and application is wrinkle-free. If the specified label cannot be affixed to packaging/container because of container size or design, special arrangements will be required. (See Section 7.7. Special Labels on page 41).
Figure 12A: Shipping/Parts Identification Label Dimensions
Cummins Legacy Label Format and Dimensions

7.5.1. Shipping/Parts Identification Label Hang Tag Size and Material

The tag size should be the same as described above, plus the material necessary to add a reinforced eyelet to the tag. The tag should be durable enough to assure readability at its destination. (See Figure 13: Shipping/Parts Identification Label Hang Tag on page 38.)
Figure 13: Shipping/Parts Identification Label Hang Tag

Figure 14: Odette Format with Country of Origin Data Location
Figure 15: Legacy Cummins Label with Gross Wt. and Country of Origin

The part number, quantity, supplier number, and label serial number shall be included on each label in the designated data areas and shall be displayed in both human readable characters and bar code symbols. The purchase order number on individual carton labels can be an exception if you are pulling packaged labeled product from stock that you ship to multiple Cummins locations, however, the Master Label shall have the purchase order displayed in human readable characters and bar code symbols. All data may vary in length.
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Label Identifier Code</th>
<th>Min. Human Readable Year of Height</th>
<th>Barcode Requirements</th>
<th>Designated by</th>
<th>Label Comments</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART NO.</td>
<td>P</td>
<td>0.5 in. (13mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X</td>
<td>barcode symbol shall not exceed 5.5 in (140 mm) in length.</td>
</tr>
<tr>
<td>QUANTITY</td>
<td>Q</td>
<td>0.5 in. (13mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X</td>
<td>When the unit of measure is pieces, no notation is required. When the unit of measure is not pieces (e.g., pounds, pairs, feet, etc.), it shall be noted in human readable quantity and shall be a minimum of 0.2 in (5 mm) high.</td>
</tr>
<tr>
<td>P.O. NO</td>
<td>K</td>
<td>0.2 in. (5 mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>SUPPLIER NO</td>
<td>V</td>
<td>0.2 in. (5 mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>SERIAL</td>
<td>S</td>
<td>0.2 in. (5 mm)</td>
<td>Per 7.6.1</td>
<td>Supplier</td>
<td>X X</td>
<td>Sometimes known as the Advanced Shipment Notification (ASN)</td>
</tr>
<tr>
<td>Unique Serial Number</td>
<td>M</td>
<td>0.2 in. (5 mm)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RECEIVER</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Customer</td>
<td>X X</td>
<td>This is the physical ship to address</td>
</tr>
<tr>
<td>DOCKGATE</td>
<td>None</td>
<td>0.5 in. (13mm)</td>
<td>None</td>
<td>Customer</td>
<td>X X X X X X</td>
<td>ODETTE label has specified cell on the top/right of the label. All Cummins Legacy labels have the information in the Special Cell on the bottom/right specified ad R.4.</td>
</tr>
<tr>
<td>ADVICE NOTE</td>
<td>N</td>
<td>0.2 in. (5 mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>SUPPLIER ADDR</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X X X X X</td>
<td>ODETTE label has specified cell on the top/right section of the label. All others to be in the SERIAL cell, below the barcode and shall be 0.1 in. (2.5 mm) in height</td>
</tr>
<tr>
<td>NET WT</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X</td>
<td>New Requirement on Cummins Legacy labels</td>
</tr>
<tr>
<td>GROSS WT</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NO OF BOXES</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>None</td>
<td>0.1 in. (2.5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X X X X X</td>
<td>ODETTE label has specified cell on the center/right section of the label. All Cummins Legacy labels have the information in the Special Cell on the bottom/right. Description to be same as supplier drawing description.</td>
</tr>
<tr>
<td>SUPPLIER PART NO</td>
<td>TBD</td>
<td>0.2 in. (5 mm)</td>
<td>Per 7.6.1</td>
<td>Supplier</td>
<td>X X</td>
<td>Optional information. ODETTE label has specified cell on the center/right section of the label. All Cummins Legacy labels have the information in the Special Cell on the bottom/right. If a barcode is used, the reserved identifier codes shall be used.</td>
</tr>
<tr>
<td>DATE</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X</td>
<td>Format of date per customer requirements.</td>
</tr>
<tr>
<td>ENG CHANGE</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>None</td>
<td>Supplier</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>COUNTRY OF ORIGIN</td>
<td>None</td>
<td>0.2 in. (5 mm)</td>
<td>N/A</td>
<td>Supplier</td>
<td>X X X X X X</td>
<td>Alpha-2 code per ISO 3166</td>
</tr>
<tr>
<td>PURCHASE ORDER RELEASE NO</td>
<td>5K</td>
<td>0.1 in. (2.5 mm)</td>
<td>Per 7.6.1</td>
<td>Customer</td>
<td>X X X X X X</td>
<td>Used primarily with blanket order where a release number is specified by receiving site.</td>
</tr>
</tbody>
</table>

Figure 16: Label Identification Table
7.6. Bar Code Symbology

7.6.1. Label Identifier Codes

A data identifier code in the first position following the start code of the bar code symbol shall be used to identify the information to follow. This character is not to be included in the human readable line, but is shown in the human readable characters under the title for the appropriate data area. Using additional bar code symbols on shipping packages is not encouraged, but may be appropriate in some circumstances. To prevent reading wrong data into a system, and to differentiate among all bar code symbols, any added bar code symbols placed on the Shipping / Parts Identification Label shall have data identifiers. Any added bar code symbols placed elsewhere on a shipping package shall also contain a data identifier. The data identifier codes are listed in Figure 16: Label Identification Table on page 40.

Note that the identifiers ‘D’ and ‘E’ are reserved for assignments to data that can be made by the Customer and Supplier locations. If a Supplier or Customer wishes to assign different identifiers to more than one data item, double data identifiers can be used, e.g., ‘EA’ for Supplier’s product number, ‘EB’ for Supplier’s inspector number, etc.

All barcodes shall be Code 39

7.6.2. Check Digits

Check digits shall not be added in the bar codes.

7.6.3. Quality Assurance Requirements

It is the responsibility of the supplier to provide barcoded labels that meet these specifications. Equipment is available to verify that bar code symbols meet these requirements. Barcode labeling solutions are available online by purchasing their software or services to print labels to minimize hardware investment costs.

7.7. Special Labels

While these specifications will cover most situations, there will be circumstances where requirements will dictate special arrangements between Customers and Suppliers. Every effort to minimize these situations should be a goal of all so that complexities and costs are not added.

Two (2) situations where special labels may be needed for better handling are multiple and mixed item packs. They are to be used only when supplier and customer mutually agree.
7.7. Special Labels (Continued)

When multiple or paired part numbers are shipped in the same container, the human readable part numbers for each part packed shall be printed in the Part Number area and the bar code symbols for these part numbers shall not be printed. (See Figure 17: Special Label on page 42).

Figure 17: Special Label

7.7.1. Multiple, Common Item Packs

A Master Label, as shown in Figure 18: Master Label on page 43 shall be used when the total contents of a multiple, common item pack is to be identified. Each sub-pack of the multiple pack shall be identified with a Shipping/Parts Identification Label. The total multiple pack shall be identified with a Master Label on 2 sides of the unit load. To the extent possible, the label should be placed on a pack in such a manner that when the pack is broken apart the label is discarded (e.g., hang Master Label from banding or stretch wrap, shrink-wrap or on outside of an over-pack pallet carton.)
7.7.1. Multiple, Common Item Packs (Continued)

At the top of this label, the heading “Master Label” shall be printed in bold 1.0 in. (25.4 mm) letters. The balance of the label format shall conform to the specifications of the Shipping/Parts Identification Label except that the data identifier for the serial number shall be (M) instead of (S). The serial number, preceded by an “M” in the bar code form only shall be a unique number, not to be repeated over the course of a year. The quantity on the master label shall be the total in all the subpacks.

Purchase Order Number is a required field by Cummins Inc. for “Master Label”. The human readable purchase order number shall be a minimum of 0.2 in. (5 mm) high. The bar code symbol of the purchase order number shall be directly below the human readable characters and shall be a minimum of 0.5 in. (13 mm) high. The maximum length anticipated for the purchase order number is eight (8) characters plus the data identifier (K).

Figure 18: Master Label
7.7.2. Mixed Item Loads

Mixed Item loads shall have a label with the words “Mixed Load” in bold 1.0 in. (25.4 mm) letters attached in a noticeable location on the pack/container. Two alternative label designs are specified; one generic designed to alert the site that mixed materials are enclosed and one that identifies the supplier and serialized information.

Each sub-pack or item shall be identified with a Shipping/Parts Identification Label as referenced above.

See Figure 19: Mixed Load Label Examples on page 44 for both label examples.

Figure 19: Mixed Load Label Examples
7.7.3. Label Location

Illustrations of the most common shipping packs and recommended label locations are shown in Figure 20A: Label Location Examples, Figure 20B: Label Location Examples and Figure 20C: Label Location Examples. In most cases two labels are specified. The bottom edge of the label shall be parallel to the base of the package/container.

To facilitate automatic reading of bar code symbols, the top edge of the label, where possible, should be no closer than 0.5 inches from the top of the container. Wraparound labels are acceptable as long as quiet zones are within specifications.

Figure 20A: Label Location Examples
Figure 20B: Label Location Examples

- **Bales**
 Identical label should be located on two adjacent sides.

- **Baskets, Wire Mesh Container**
 Identical labels shall be located on two (2) adjacent sides.

- **Metal Bin or Tub**
 Tag one visible piece near top, or use a label holder.

- **Pallet Box**
 Identical labels should be located on two (2) adjacent sides (wraparound label acceptable).

- **Telescopic or Set-up Containers**
 Identical labels should be located on two (2) adjacent sides of the outer box. Some applications may also require identification of the inner box.

- **Bundle**
 Identical labels should be located on each end.
Figure 20C: Label Location Examples

8. Ergonomics and Sustainability

The following guidelines shall be used in establishing the right-sized container, type, part orientation, and ergonomics

a. Containerization and packaging methods shall optimize pack density with consideration for part quality, ergonomics, and cost. Cummins Ergonomic Standard (CORP-09-10-03-01) contains full ergonomic design guidelines. This document can be found on the Cummins Supplier Portal.

b. Part orientation for ergonomic presentation shall optimize the operator’s grasp, lift, manipulation and part transfer to the work. Operators should be able to grasp and lift the part from the packaging while maintaining neutral postures.

c. Part orientation in the container shall utilize the relative location to the container label as a reference for consistent presentation at line-side.

d. Parts should be presented in the same orientation as they are assembled or worked to minimize part handling.
8. Ergonomics and Sustainability (Continued)

e. Where dunnage is required, its orientation within the container shall be consistently applied such that the part-to-shipping label relationship is maintained.

f. Dunnage should include hand coupling design and orientation of handles to allow for power grip and neutral postures. Where incorporated, ideal handle length is 5" minimum and hand hold cutout is 4.5" minimum. Dunnage shall be designed to allow hand access to properly grasp the parts. When designing for hand clearance, gloves should be considered.

g. Dunnage should be used to prevent part shifting.

h. Manually handled containers are the preferred method of packaging when an ergonomic advantage can be realized by a decreased reach or lift distance. Manually handled containers are preferred over bulk style packaging for their contribution to small lot strategy and the ergonomic advantage of reduced reach and lift distance.

i. Any packaging which could exceed the weight guidance should be designed with consideration for lift assists or equipment.

9. Reference Readings

The following references were used in the preparation of this standard.

a. AIAG B1, Bar Code Symbology Standard

b. ANSI ASC X12.3, Data Element Dictionary
Appendix A: Packaging Glossary of Terms

Table A1: Packaging Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3PL</td>
<td>Third Part Logistics Services</td>
</tr>
<tr>
<td>4-way entry</td>
<td>A pallet whose configuration permits insertion and withdrawal of handling equipment from all sides of the pallet.</td>
</tr>
<tr>
<td>Adhesives</td>
<td>Materials capable of adhering one surface to another. As used in connection with fiber boxes: a material to glue piles of solid fiberboard, to glue facings to corrugating medium in combined corrugated board, to glue the overlapping sides of a box forming the manufacturer’s joint or to glue the flaps in closing a slotted box.</td>
</tr>
<tr>
<td>AIAG</td>
<td>Automotive Industry Action Group</td>
</tr>
<tr>
<td>Angle Board</td>
<td>Corner Board or Angle Board used to protect packaged products during storage or shipment. They are used to protect freight from dents, strapping, stretch film, and other shipping and handling damage. Also to improve stack strength.</td>
</tr>
<tr>
<td>APQP</td>
<td>Advanced Production Quality Planning, a methodical process used to introduce new or changed products & processes.</td>
</tr>
<tr>
<td>Assurance Level</td>
<td>The test intensity for packaging based on the level one wants to achieve in package performance. For an average level of assurance, one may use Level II with medium test intensities; for highest level of assurance, Level I; and for the lowest level of assurance, Level III.</td>
</tr>
<tr>
<td>Bill of Lading</td>
<td>A detailed list of a shipment of goods in the form of a receipt given by the carrier to the person consigning the goods.</td>
</tr>
</tbody>
</table>
Appendix A: Packaging Glossary of Terms (Continued)

Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Risers</td>
<td>Rectangular, square or cylindrical deck spacer, or blocks between the pallet decks or beneath the top deck, often identified by its location within the pallet as corner block, end block, edge block, inner block, center or middle blocks.</td>
</tr>
<tr>
<td>Bulk Pack</td>
<td>A container in or on which multiple like parts are packaged and used as a single container and does not contain multiple primary containers of parts.</td>
</tr>
<tr>
<td>Class “A” Surfaces</td>
<td>Term used in automotive design to describe a set of free form surfaces of high efficiency and quality.</td>
</tr>
<tr>
<td>Closed Crating</td>
<td>A container with structural framework and panel members fastened together to form a rigid enclosure. The panels used to create this enclosure can be made of corrugated paper, plywood, OSB or any product strong enough to perform containment of given products. Closed crating boxes are fully enclosed and can have any section (i.e. side, end, top, base and cap) removable for filling.</td>
</tr>
<tr>
<td>Closure</td>
<td>A means of closing a container to secure the contents.</td>
</tr>
<tr>
<td>Container fleet size</td>
<td>Number of containers necessary to support a given returnable system flow from and return to point of origin.</td>
</tr>
<tr>
<td>Corner Posts</td>
<td>A structural support member placed inside or outside of the corners of unit load or carton to improve stacking capacity.</td>
</tr>
<tr>
<td>Corrosion Inhibitors</td>
<td>A media used to inhibit oxidation of ferrous and non-ferrous metals.</td>
</tr>
<tr>
<td>Corrugated packaging material</td>
<td>The structure formed by gluing one or more sheets of fluted corrugating medium to one or more flat facings of liner board. Sometimes inaccurately called cardboard.</td>
</tr>
</tbody>
</table>
Appendix A: Packaging Glossary of Terms (Continued)

Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube Utilization</td>
<td>Cube utilization is an industry term that refers to the amount of the total available space that is utilized, expressed as a percentage. When a space is completely filled with product, the cube utilization is 100%. This term is valid in secondary, tertiary or truck/container loading.</td>
</tr>
<tr>
<td>Cummins receiving site</td>
<td>The Cummins site location specifically receiving the parts that are supplied by the Supplier.</td>
</tr>
<tr>
<td>Cycle counting</td>
<td>A cycle count is an inventory management procedure where a small subset of inventory is counted on specified intervals to validate physical counts match system balances.</td>
</tr>
<tr>
<td>Deck board</td>
<td>Element or component of a pallet deck, oriented perpendicular to the stringer or stringer board.</td>
</tr>
<tr>
<td>Deck board spacing</td>
<td>Distance between adjacent deck boards.</td>
</tr>
<tr>
<td>Desiccants</td>
<td>A drying agent used to quickly reduce the humidity inside a closed container to a predetermined lower value, and then to keep the humidity at that lower level for a period of time.</td>
</tr>
<tr>
<td>Double Wing</td>
<td>Pallet style that has top and bottom deck boards that extend over the stringers of a pallet.</td>
</tr>
<tr>
<td>Dunnage</td>
<td>Devices or materials used to orient, secure and/or protect goods during shipment.</td>
</tr>
<tr>
<td>Dynamic environment</td>
<td>State in which product is in motion such as in a freight transport event.</td>
</tr>
<tr>
<td>Expendable packaging</td>
<td>Packaging material intended primarily for a one-time use, then disposition as; reuse, recycle or discard.</td>
</tr>
</tbody>
</table>
Appendix A: Packaging Glossary of Terms (Continued)

Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failsafing</td>
<td>Method for inherently error proofing an action or result.</td>
</tr>
<tr>
<td>Fleet Size</td>
<td>The number of container days in a returnable container system allocated to the combined Supplier and Cummins receiving size flows.</td>
</tr>
<tr>
<td>Float days</td>
<td>The number of container days in a returnable container system allocated specifically to the Supplier side flows.</td>
</tr>
<tr>
<td>Foot Print</td>
<td>The length and width dimensions of a specific package or unit load.</td>
</tr>
<tr>
<td>GPS Website</td>
<td>Global Purchasing System Website where Suppliers can access information and requirements regarding Purchasing and Packaging Standards.</td>
</tr>
<tr>
<td>Isometric</td>
<td>A method of technical drawing projection in which a three-dimensional object is represented.</td>
</tr>
<tr>
<td>ISPM-15</td>
<td>International Standard for Phytosanitary Measure No.15. An International Plant Protection Commission's (IPPC) global regulation governing approved measure for insect eradication from solid timber packaging materials used in international trade. Usually done through an approved Heat Treat or Fumigation process.</td>
</tr>
<tr>
<td>JISK0303</td>
<td>Japanese Industrial Standard for regulation of formaldehyde air born concentration threshold for manufactured wood materials.</td>
</tr>
<tr>
<td>Label placards</td>
<td>A device providing a reusable label holding surface, where one-time use labels can be quickly applied and removed with no label residuals.</td>
</tr>
<tr>
<td>Line side presentation</td>
<td>Method of part and/or packaging is introduced to the assembly line or a lean manufacturing assembly station for use.</td>
</tr>
</tbody>
</table>
Appendix A: Packaging Glossary of Terms (Continued)

Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufactured wood</td>
<td>Wood materials produced from a man made process using raw timbers to create plywood, Oriented Strand Board (OSB), Layered Veneered Lumber, Layered Strand Board, Pressed Wood, etc.</td>
</tr>
<tr>
<td>Metal Stitches</td>
<td>Machined formed fastening device using wire drawn from a spool.</td>
</tr>
<tr>
<td>Mixed Load</td>
<td>A unit load consisting of more than one part number of packaged parts.</td>
</tr>
<tr>
<td>Modularity</td>
<td>The concept of joining together standardized packaging units to form larger compositions that will provide efficiency in the packaged unit and mode of transportation.</td>
</tr>
<tr>
<td>Nested</td>
<td>The configuration of stacked items such that each successive item is contained to some degree within the next.</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health, a United States governing body covering occupational, health and safety regulations.</td>
</tr>
<tr>
<td>NWPCA</td>
<td>National Wood Pallet and Container Association, a North American organization that set and governs standards for wood pallet and wood container construction and materials.</td>
</tr>
<tr>
<td>Open Crating</td>
<td>A wood container with structural framework fastened together to form a rigid support structure.</td>
</tr>
<tr>
<td>Overhang</td>
<td>That portion of the part/carton/unit load that extends beyond the width or length dimension of pallet. (Not allowable.)</td>
</tr>
<tr>
<td>Over-pack</td>
<td>A large/secondary container into which smaller primary container(s) are packaged.</td>
</tr>
</tbody>
</table>
Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palletization</td>
<td>Stacking and securing of containers on pallets for shipment as a unit load.</td>
</tr>
<tr>
<td>Phytosanitary</td>
<td>Free from harmful pests and plant diseases. Reference ISPM 15.</td>
</tr>
<tr>
<td>Plan-For-Every-Part (PFEP)</td>
<td>A process that defines and optimizes the containerization and material flow characteristics of a packaged part, including part orientation, standard pack quantity (right sized pack), pack dimensions & weight, lineside presentation, delivery frequency, etc.</td>
</tr>
<tr>
<td>Point of origin</td>
<td>Location or station where Cummins takes ownership of the goods.</td>
</tr>
<tr>
<td>Point of use</td>
<td>Location or station where a product or component will be consumed.</td>
</tr>
<tr>
<td>Poly-bag</td>
<td>Plastic film bag consisting of any thermal plastic polymer or combinations there of.</td>
</tr>
<tr>
<td>Pre-Consumer Recycled Material</td>
<td>Pre-consumer material (also known as in-process) is waste generated in the manufacturing process, and used again to make the same material or product.</td>
</tr>
<tr>
<td>Post-Consumer Recycled Material</td>
<td>Post-consumer content comes from a finished product that was purchased by a consumer and used, and then recycled after it is used to make a new product and diverting it from going into a landfill.</td>
</tr>
<tr>
<td>Production Parts Approval Process (PPAP)</td>
<td>A process to document the initial quality planning work required to prevent problems from occurring during production.</td>
</tr>
<tr>
<td>Primary container</td>
<td>The smallest unit of containerization of the packaged part.</td>
</tr>
<tr>
<td>Recyclable Material</td>
<td>Material that may be reprocessed for use as raw material.</td>
</tr>
</tbody>
</table>
Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returnable Containers</td>
<td>A shipping container specifically designed for long term return and reuse over the product life cycle.</td>
</tr>
<tr>
<td>Reusable Packaging</td>
<td>Packaging that may be safely reapplied for a limited number of use cycles without compromising its protective function.</td>
</tr>
<tr>
<td>Right-sized container</td>
<td>Pack quantity and container size to optimize material flows and lineside presentation.</td>
</tr>
<tr>
<td>S Review</td>
<td>Purchasing Readiness Review Process when sourcing a new supplier.</td>
</tr>
<tr>
<td>Secondary Container</td>
<td>A container in which one or more primary containers are packaged.</td>
</tr>
<tr>
<td>Shiner</td>
<td>Protruding fastener with points that extends outside the wood pallet, crate or box.</td>
</tr>
<tr>
<td>Shrink wrap</td>
<td>Plastic film that is applied to a package or product that is then passed through an oven or other heating device to shrink the plastic film around the item.</td>
</tr>
<tr>
<td>Solid timber</td>
<td>Homogeneous raw wood packaging material (e.g. solid boards or planks).</td>
</tr>
<tr>
<td>Static environment</td>
<td>State in which product is motionless such as in a warehouse environment.</td>
</tr>
<tr>
<td>Stretch wrap</td>
<td>Plastic film that is applied to a package/product that is elongated and wrapped around a unit load in several overlapping revolutions to securely unitize a pallet load of product.</td>
</tr>
<tr>
<td>Stringer</td>
<td>A continuous longitudinal member that supports the decks of a pallet.</td>
</tr>
</tbody>
</table>
Appendix A: Packaging Glossary of Terms (Continued)

Table A1: Packaging Glossary of Terms (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit load</td>
<td>Multiple cartons or bulk packaged items assembled into a single packaged container or structure for handling, storage, and transportation.</td>
</tr>
<tr>
<td>VCI</td>
<td>A chemical vaporization process used to retard or prevent corrosion of ferrous and non-ferrous metals. Commonly referred to as “Volatile Corrosive Inhibitor”.</td>
</tr>
</tbody>
</table>
Appendix B: Production Component Packaging Guideline - Solid Timber Closed Crating

B1. Scope

This document specifies recommended construction and dimensional standards for solid timber crate packaging for both US domestic and international applications. The intent of these standards is to provide standardization, reduce product damage, and prevent safety-related incidents resulting from pack failures. This document contains guidelines that will navigate the user to select the optimal packaging solution recognized by Cummins. The guidelines will take various parameters (e.g. size, weight, containment) into account to reach the end solution.

B2. Methodology

These guidelines were formulated as a result of combined research of various packaging styles, regionally available materials and manufacturing capabilities, transportation conditions, and industry recognized testing procedures. Once acceptable solutions were defined, these solutions were subjected to rigorous transport testing (ASTM D4169, Assurance Level 1– Drop/ Vibration/ Impact) and reviewed with multiple stakeholders to ensure successful implementation.

B3. Construction Details

The details below include all reference information necessary to navigate through the guidelines when selecting the required packaging solution.

B3.1. Material – All solid wood used shall adhere to the ISPM 15 requirements and contain no more than 14% moisture. The following material is acceptable to use during the construction of the packaging solutions:

a. Hardwood Species – (e.g. – oak, aspen, maple, poplar, ash, cottonwood, locust).
c. Plywood – E0 or E1 grade plywood is acceptable to use for the wall components only (sides, ends and tops). If plywood is chosen for wall component, it does not need to be slatted. (See Figure B1: Plywood Crate.)
Appendix B: Cummins Production Component Packaging Guidelines - Solid Timber Closed Crating (Continued)

Figure B1: Plywood Crate

B3.2. Fasteners

a. Type – Helical, smooth shank, and ring shank nails are acceptable fasteners to use during the construction. Screws are also allowed as long as they meet the engagement requirement. Staples are not acceptable fasteners. CAUTION: Protruding nails or screws are called “Shiners”. From a Safety Standpoint “Shiners” are not permitted in order to avoid personal injury during handling.

b. Engagement – The fastener engagement of two members shall be at least 75%. (E.G. when nailing a 0.75” (19.05 mm) thick panel to a 1.5” (38.1 mm) cleat, the minimum length of the fastener shall be 1.5” (38.1 mm) to provide adequate engagement.

c. Tops shall be fastened with screws for ease of unpacking and customs inspection.

d. Fastening product to base – If product is to be fastened to base, the supplier shall use deck material with a minimum thickness of 1.5” (38.1 mm) and shall not protrude the deck which can cause stripping.
Appendix B: Cummins Production Component Packaging Guidelines - Solid Timber Closed Crating (Continued)

B3.2. Fasteners (Continued)

Footprint Sizes – In order to maximize transportation cube utilization and minimize lateral impact while in transit, the footprint of the crate shall contain at least one of the following dimensions (See Table B1: Footprint Sizes on page 59). In the event this requirement cannot be met, the supplier will be required to contact its Cummins packaging representative for approval prior to implementation.

Table B1: Footprint Sizes

<table>
<thead>
<tr>
<th>International (90” wide Ocean Container)</th>
<th>US Domestic (96” wide Van)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial (inch)</td>
<td>Metric (mm)</td>
</tr>
<tr>
<td>15</td>
<td>381</td>
</tr>
<tr>
<td>18</td>
<td>457.2</td>
</tr>
<tr>
<td>22.5</td>
<td>571.5</td>
</tr>
<tr>
<td>30</td>
<td>762</td>
</tr>
<tr>
<td>45</td>
<td>1143</td>
</tr>
<tr>
<td>90</td>
<td>2286</td>
</tr>
</tbody>
</table>

B3.3. Banding – One-way banding is required on all crates. Preferred banding material shall be polyester with a minimum width of 0.75” (19.05 mm). No steel banding permitted. Banding shall be aligned on cleats and battens if present. If lack of wall strength over a large span is a concern, a center band can be placed to either side of the center runner.

B3.4. Crate capacity – The following three duty levels are to be followed:

a. Light Duty (≤ 1000 lbs/ 453 KG)
b. Medium Duty (1000 - 2500 lbs/ 453 - 1133 KG)
c. Heavy Duty (2500 - 4000 lbs/ 1133 - 1812 KG)
Appendix B: Cummins Production Component Packaging Guidelines - Solid Timber Closed Crating (Continued)

B3.5. Component Details

a. Walls (top, side and end members) – Wall boards should have a minimum width of 3.5” (88.9 mm) A combination of various widths are acceptable as long as there are no gaps between slats. If there are concerns with wall strength with a large span, a center cleat can be placed to provide additional lateral support.

b. Cleats – Cleats integrate with the walls that parallel with the runners. Sides and tops shall be secured by fasteners to the end of the cleats, and the cleats shall be fastened to the side of the runners.

c. Decks – If the crate has a large span and there are concerns with the deck strength utilizing the specific deck size board thickness specified per the weight class chart in Figure B3: Crate Components Size, the supplier shall utilize a larger size deck board thickness to accommodate the application.

d. Battens – Battens strengthen the girth of the crate parallel with the runners. Banding straps shall be placed over the battens. Battens are to be placed no more than 2” (50.8 mm) from the edge of the runner to prevent band sheering from fork tines.

e. Runner Strips – Runner strips (lower deck boards) are required if the supplier chooses to use a runner with a thickness less than 2.5” (63.5 mm) to prevent runner sheering/ buckling. Runner strips shall be a minimum of 0.5” (12.7 mm) (See Figure B2: Runner Strips).

Figure B2: Runner Strips
Appendix B: Cummins Production Component Packaging Guidelines - Solid Timber Closed Crating (Continued)

B3.6. Crate Components

<table>
<thead>
<tr>
<th>Crate Duty</th>
<th>Light (≤ 1000 lbs)</th>
<th>Medium (1000-2500 lbs)</th>
<th>Heavy (2500-4000 lbs)</th>
<th>Heavy (1133-1812 KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall (min)</td>
<td>.5 x 3.5" 12.7 x 88.9 mm</td>
<td>.75 x 5.5" 19.05 x 139.7</td>
<td>.75 x 5.5" 19.05 x 139.7 mm</td>
<td></td>
</tr>
<tr>
<td>Deck (min)</td>
<td>.5 x 3.5" 12.7 x 88.9 mm</td>
<td>1 x 3.5" 25.4 x 88.9 mm</td>
<td>1.5 x 3.5" 25.4 x 88.9 mm</td>
<td></td>
</tr>
<tr>
<td>Runner (min)</td>
<td>1.5 x 3.5" 38.1 x 88.9 mm</td>
<td>2.5 x 3.5" 63.5 x 88.9 mm</td>
<td>3.5 x 3.5" 88.9 x 88.9 mm</td>
<td></td>
</tr>
<tr>
<td>Cleat (min)</td>
<td>1 x 2" 25.4 x 50.8 mm</td>
<td>1.25 x 2.5" 31.75 x 63.5 mm</td>
<td>1.5 x 3.5" 38.1 x 88.9 mm</td>
<td></td>
</tr>
<tr>
<td>Batten (min)</td>
<td>.75 x 2.5" 19.05 x 63.5 mm</td>
<td>.75 x 2.5" 19.05 x 63.5 mm</td>
<td>1 x 3.5" 25.4 x 88.9 mm</td>
<td></td>
</tr>
</tbody>
</table>

Figure B3: Crate Components Size

Figure B4: Crate Components
Appendix B: Cummins Production Component Packaging Guidelines - Solid Timber Closed Crating (Continued)

B3.7. Construction Method

Figure B5: Construction Method
Appendix C: Packaging Data Sheet (PDS)

The Packaging Data Sheet (PDS) is to be filled out and returned to the Cummins Sourcing Manager.

Example graphics of the PDS form may not be to the latest revision level. Suppliers are to obtain the currently released revision of the PDS template from the Cummins Supplier Portal.

The PDS contains two data input tabs which shall be completed in full. These tabs are the Packaging Specification Data Sheet (PSDS) and Packaging Cost Data Sheet (PCDS).

Additionally, the Check Requirements tab may be used as a reference to ensure all standard requirements have been met in the proposed design concept.

Find the PDS for on the Supplier Portal by connecting on-line to the following path:

www.supplier.cummins.com

→ Select Standards and Processes from the left menu → Select Packaging Data Sheet Template
Figure C1: Packaging Specification Data Sheet (PSDS) Form
Figure C2: Packaging Specification Data Sheet (PSDS) Instructions
Packaging Cost Data Sheet (Continued)

Figure C3: Packaging Cost Data Sheet (PCDS) Form

Current Release Number: 192020-099
Std. Revision Level: 002
Page: 66 of 70

CUMMINS CONFIDENTIAL
This document (and the information shown thereon) is **CONFIDENTIAL AND PROPRIETARY** and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.
Appendix C: Packaging Specification Data Sheet (Continued)

PACKAGING COST DATA SHEET

SUPPLIER INSTRUCTIONS

COMPONENT PART - PROPOSAL INFORMATION

PART NUMBER: All information in this section is the same as that of the corresponding PSDS section and is so structured to facilitate traceability of a printed copy.

REV. LEVEL:

NAME:

ANNUAL VOLUME:

PREP. PROVIDED:

SUPPLIER INFORMATION

COMPANY NAME:

SUPPLIER ADDRESS (BUSINESS OFFICE):

SUPPLIER ID NO:

VAT/TAX REPR. TYPE:

PHONE NUMBER:

EMAIL ADDRESS:

PRIMARY CONTAINER INFORMATION

CONTAINER TYPE: Check box to indicate the design style of the primary container. Check ‘Other’ and describe, if design style differs from those provided.

MATERIAL TYPE:

FLUTE CONFIGURATION:

BURST / ECT: Indicate the corrugated flute configuration (i.e. A, B, C, E) of the container material.

COST PER CONTAINER:

DURRANCE TYPE: Check boxes to indicate all durrance types employed.

DESCRIPTION/QUALIFIER: Provide a description or qualifier for each durrance type employed, as applicable.

QUANTITY PER CONTAINER: Indicate the quantity of each durrance type employed per one single primary container.

KILLOGRAMS PER ITEM: Indicate the weight in kilograms of one single item of each durrance type employed.

KILLOGRAMS PER CONTAINER: The total durrance item weight by item will automatically calculate from the corresponding fields.

COST PER EACH: Indicate the cost in US Dollars of one single durrance component for each durrance type employed.

COST PER CONTAINER: The sum of cost per container of each durrance type employed will automatically calculate.

SUBTOTAL COST/CONTR:

SECONDARY CONTAINER / PALLET INFORMATION

SECONDARY CONTAINER: A container in which one or more primary containers is packaged or for consolidating the materials into a single unit load.

CONTAINER TYPE: Check box to indicate the type of the secondary container. Check ‘Other’ and describe, if type differs from those provided.

DESCRIPTION/QUALIFIER: Provide a description or qualifier for the container type, as applicable (i.e. shrink, black, wrapped).

MATERIAL:

ISPM-15 CERTIFIED: Check ‘YES if your container is ISPM-15 Certified.

COST PER CONTAINER: Include the Cost in US Dollars of the secondary container.

CLOSE DURRANCE MATERIAL INFORMATION

MATERIAL TYPE: Check boxes to indicate all durrance material types employed. Check ‘Other’ and describe, if material type differs from those provided.

MATERIAL DESCRIPTION:

QUANTITY PER UNIT LOAD: Indicate the quantity of each material type employed per Unit Load. Include primary container labels in ‘Label Quantity’.

KILLOGRAMS PER ITEM: Indicate the weight in kilograms of one unit of each material type employed - where ‘units’ may be ‘each’ or ‘pallet’. For ‘Other’ indicate the unit of measure.

KILLOGRAMS PER UNIT LOAD: The total durrance weight by item will automatically calculate from the corresponding fields.

COST PER: Indicate the cost of one unit of each material type employed - where ‘units’ may be ‘each’ or ‘pallet’. For ‘Other’ indicate the unit of measure.

COST PER UNIT LOAD: The sum of cost per Unit Load of each material type employed will automatically calculate.

SUBTOTAL COST/CONTR:

PACKAGING MATERIAL COST AND WEIGHT SUMMARY

QUANTITY FIELD: The quantity fields will automatically populate from the corresponding field of the PSDS.

COST/WEIGHT FIELD:

CHECK YOUR WORK - CONFIRM CALCULATED FIELDS ACCURATE

PSDS approval indicates acceptance of the supplier proposal however does not remove the supplier of responsibility for packaging performance to the point of sale.

This document is the property of Cummins Inc. and cannot be used without permission of the Cummins Global Packaging Council.

PSDS - REV 01 - 4543P3016

Figure C4: Packaging Cost Data Sheet (PCDS) Instructions
Appendix D: Revision Log Sheet

Table D1: Revision Log Sheet

<table>
<thead>
<tr>
<th>Date</th>
<th>Page No.</th>
<th>What was changed or updated</th>
<th>By Whom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/11/2019</td>
<td>All</td>
<td>Replaced word plant with site</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>All</td>
<td>Replaced Packaging Specification Data Sheet (PSDS) with Packaging Data Sheet (PDS)</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>1</td>
<td>Updated abstract</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>6</td>
<td>Added Supplier Portal image</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>8</td>
<td>Changed from NCMR or MNC to MNC only</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>8</td>
<td>Replaced Global Packaging Council Member with Sourcing Manager</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>8</td>
<td>Directed user to the Site Specific Packaging Requirements document on the CMI Supplier Portal</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>9</td>
<td>Added Figure 2: Packaging Data Sheet (PDS) Data Flow Diagram on page 10.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>10</td>
<td>Updated Package Data Sheet (PDS) flow chart</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>11</td>
<td>Updated Package Data Sheet (PDS) flow chart (continued) to show the connection between the previous page</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>12</td>
<td>Updated introductory paragraph for Section 5.1. Part Protection on page 13</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>7, 13, 14</td>
<td>Wrote out Supplier Quality Improvement Engineer (SQIE)</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>13</td>
<td>Updated definition of preservation to include deterioration</td>
<td>P. Ouillette</td>
</tr>
</tbody>
</table>
Table D1: Revision Log Sheet (Continued)

<table>
<thead>
<tr>
<th>Date</th>
<th>Page(s)</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/11/2019</td>
<td>13, 14</td>
<td>Updated Sustainability and Environmental Impact section for clarity of materials that are acceptable, allowable with approval, and prohibited. Indicated that allowable material packaging approval is required at the part number level. Added chart with recycle symbols per Sustainable Packaging Coalition.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>17</td>
<td>Changed Section 5.7.2. on page 19 title from Pallet Construction to Pallet Design and Construction. Added ISO references for pallet testing recommendations. Changed Section 5.7.1.2. on page 18 from Pallet Styles to Pallet Design Requirements. Updates include lift access for Stringer and Block Style designs.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>17</td>
<td>Added that for all international shipments, all wood pallets must abide by ISPM 15 requirements.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>17</td>
<td>Indicated that no container/carton overhang is allowed</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>18</td>
<td>Added Single Wing pallets to the unacceptable style of pallets.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>18</td>
<td>Indicated that metal strapping approval is required at the part number level</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>20</td>
<td>Updated the diagram showing package modularity</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>22</td>
<td>Updated unit load height to width ratio (h:w) to not exceed 2:1 without PDS approval</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>24</td>
<td>Updated Figure 11: Example Packaging Plan on page 28 to eliminate the image of staples in the boxes as staples are not allowed in Cummins sites.</td>
<td>P. Ouillette</td>
</tr>
</tbody>
</table>
Table D1: Revision Log Sheet (Continued)

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision(s)</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/11/2019</td>
<td>24, 25</td>
<td>Updated language in packaging test standards to reflect the fact that Cummins reserves the right to require testing.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>29</td>
<td>Section 7.3. on page 34; Updated the preferred Cummins Label information and the reasoning behind the decision.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>30</td>
<td>Added New Wt. and Gross Wt. definition to text (o. and p.).</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>31</td>
<td>Added label template images with recommended dimensions, showing the weight and country of origin space on the label.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>32</td>
<td>Added image of both formats of preferred labels as tags.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>32, 33</td>
<td>Added image examples of each format in a completed label.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>34</td>
<td>Added a table to show the labeling requirements.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>38-40</td>
<td>Section 7.7.3. on page 45; Updated the label location diagrams into an easier to read table.</td>
<td>P. Ouillette</td>
</tr>
<tr>
<td>7/11/2019</td>
<td>41</td>
<td>Section 8. on page 47; Added Ergonomics and Sustainability section. Note that the Cummins Ergonomic Standards is located on the Supplier Portal (supplier.cummins.com)</td>
<td>P. Ouillette</td>
</tr>
</tbody>
</table>